dB(A) INFORMATION

Noise Levels - Calculation and use of the dB(A)	The human ear is more sensitive to some frequencies than others. In particular low frequency noises sound quieter than high frequency noises. In the 1930's, experiments were carried out on 11 people by Harvey Fletcher at the Bell Telephone Laboratories in New York to determine how loud tones of different frequencies sounded subjectively. The 'A' frequency weighting or more commonly dB(A) is based on how loud various tones played at different frequencies sound compared to a tone of 40 dB, at 1000Hz. The 'A' frequency weighting corrections are shown below.								
	Octave Band Centre Frequency, Hz 63 125 250 500 1000 2000 4000 80								8000
	'A' frequency weighting corrections	-26	-16	-9	-3	0	+1	+1	-1
	The 'A' frequency weighting suggests th 40 dB tone played at 63 Hz would soun simplicity and convenience, the 'A' frequ now used for many different noise source regarding noise is written using dB(A)s, and other noise generating machines que metres assuming spherical distribution. the 'A' frequency weighting and how dB	hat if a d 26 d uency ces at in ado uote th It is th (A)s a	tone B qui weigh differe dition heir no herefo re cal	of 40 eter, c ting h ent lev nearly bise le bre im culate	dB is or be ^ as be vels. v all m evels i portar ed.	played I4 dB(come In fact aanufa n dB(/ nt that	d at 10 A). D popul , mos cturer A)s at we ur	000 H; ue to ar and t legis s of fa 1, 1.5 nderst	z, a its J is lation ins , or 3 and
Information on Fan Noise Test Standards	Where noted in the product data pages tested to Bs848 Part 2: 1985 "Fans for g This test standard describes methods th power level of fans. That is, the In-Duct the Free Field method. The sound press of these test methods. The sound press of these test methods. A calculation is t pressure levels to sound power levels.	within genera nat ma t meth ssure le sure le hen us	this c al purp y be a od, th evel o evel of sed to	atalog poses applie e Rev f a pro a pro conv	gue fa Meti d to c verber oduct oduct ert the	in nois hods c alcula ant Ro is mea is mea	e leve of nois te the bom m asured sured	els are e test sound hethoo d using sound	ing". 1 1 and g one g one d
A cautious word on the us of dB(A) levels	The dB(A) sound pressure level is used of many items of noise emitting machin- pressure levels should be used for com to reflect actual installed noise levels. T the dB(A) are rarely replicated in real life values will not necessarily represent the experienced on site.	l almos ery. H parativ The as e situa e actua sound	st univ owev ve pur sump ations al n no press	versal er, pu pose tions , and bise le	ly to c blishe s only that a theref evels t vel that	lescrit d dB(, , they re use ore, p hat m hat may	be the A) sou are no d to c ublish ay be / be e	noise ind of desi alcula ed dB	level igned te (A)
	from an installation, an acoustic analysi and taking into account the surrounding	s of th acou	e sys stic er	tem, ι ιviron	using : ment,	sound shoul	powe d be p	r leve perfori	ls ned.
Calculating dB(A) Noise Levels	Published dB(A), or 'A' frequency weigh values. These are, in fact, calculated fre quoted at a specified distance i.e. 1, 1.5 model AP0804AP10/23 (duty 7000 l/s @ frequency weighting correction to the fa then logarithmically adding the values fr power level for this unit will be 98 dB(A) this value from the 'A' weighted sound p level at a prescribed distance from the r J-11 for a detailed example of this calcu	ted, so om the 5, or 3 20 80 P n sour rom lef no sour l noise s lation.	ound p sour meter a, inle nd pov ft to rig ther c evel t source	oressind pov rs. Fo et side wer le ght th calcula o an ' e i.e. 7	ure lev ver le or exal e), by vels fo e resu ation i A' wei 7 dB(vels ai vel da mple, applyi or eac ultant o s requ ghted (A) @	re theo ta and using ng an h freq overal irred to sound 3m.	oretica l are the Al 'A' uency l soun conv d pres See p	al VIS d vert sure bage

dB(A) INFORMATION

1. 'A' weighting corrections

In-duct Sound Power levels, L _W dB re 1pW								
Frequency (Hz)	63	125	250	500	1k	2k	4k	8k
AP0804AP10/23 Inlet	94	88	95	94	94	91	88	80
'A' frequency weighting corretion	-26	-16	-9	-3	0	+1	+1	-1
dB(A) Sound Power level	68	72	86	91	94	92	89	79

2. Addition of sound levels

(Refer also to page G-31, Figure 17 in this catalogue).

	Difference	Add	Sum		
68 + <u>72</u>	4	1.5	73.5		
7.5 + <u>86</u>	12.5	0.2	86.2		
86.2 + <u>91</u>	4.8	1.2	92.2		
92.2 + <u>94</u>	1.8	2.2	96.2		
96.2 + <u>92</u>	4.2	1.4	97.6		
97.6 + <u>89</u>	8.6	0.6	98.2		
98.2 + <u>79</u>	19.2	0	98.2		

98.2 dB(A) is rounded to 98 dB(A)

3. Converting Sound Power to Sound Pressure

To convert this 'A' weighted sound "power" level to an 'A' weighted sound "pressure" level (which is calculated for a specified distance from the source) the following equation is used:

	$L_{P} = L_{W} - 20 \log_{10}(d) - 11$
Where:	$L_W =$ Sound Power Level re 10 ⁻¹² W (dB)
	$L_{\rm D}$ = Sound Pressure Level re 20 μ Pa (dB)
	d' = Distance from fan in metres (m)

Therefore, to determine the dB(A) sound pressure level at a distance of 3m:

$$\begin{split} L_{p} &= 98 - 20 \log_{10}(3) - 11 \\ L_{p} &= 98 - 10.5 - 11 \\ L_{p} &= 98 - 21 \\ L_{p} &= 77 \text{ dB(A)} @ 3 \text{m} \end{split}$$

Note that the above calculation assumes that the fan behaves as a point source of noise, that the noise radiated in all directions equally, and that no reflected sound is present.

Ν

Κ

AMS